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A B S T R A C T

Climate and land use patterns are expected to change dramatically in the coming century, raising concern about
their effects on wildfire patterns and subsequent impacts to human communities. The relative influence of cli-
mate versus land use on fires and their impacts, however, remains unclear, particularly given the substantial
geographical variability in fire-prone places like California. We developed a modeling framework to compare the
importance of climatic and human variables for explaining fire patterns and structure loss for three diverse
California landscapes, then projected future large fire and structure loss probability under two different climate
(hot-dry or warm-wet) and two different land use (rural or urban residential growth) scenarios. The relative
importance of climate and housing pattern varied across regions and according to fire size or whether the model
was for large fires or structure loss. The differing strengths of these relationships, in addition to differences in the
nature and magnitude of projected climate or land use change, dictated the extent to which large fires or
structure loss were projected to change in the future. Despite this variability, housing and human infrastructure
were consistently more responsible for explaining fire ignitions and structure loss probability, whereas climate,
topography, and fuel variables were more important for explaining large fire patterns. For all study areas, most
structure loss occurred in areas with low housing density (from 0.08 to 2.01 units/ha), and expansion of rural
residential land use increased structure loss probability in the future. Regardless of future climate scenario, large
fire probability was only projected to increase in the northern and interior parts of the state, whereas climate
change had no projected impact on fire probability in southern California. Given the variation in fire-climate
relationships and land use effects, policy and management decision-making should be customized for specific
geographical regions.

1. Introduction

As one of the most fire-prone places in the world, California is globally
recognized for its long history of wildfire-related losses of homes and
human lives. Wildfire is also important for shaping ecological structure
and function (van Wagtendonk, 2018), but many of California’s diverse
fire regimes, as those across the world, are changing in response to past
fire management (e.g., Steel et al., 2015), invasive species (e.g., Syphard
et al., 2017a), land use change (e.g., Mann et al., 2016), and climate

change (e.g., Westerling and Bryant, 2008). Climate and land use pat-
terns, in particular, are expected to change dramatically in the coming
century, raising concern about their effects on fire regimes and sub-
sequent impacts to human communities across the world. California is
expected to embody a wide range of these changes and their impacts, and
the risk to human communities is complex because it requires predicting
how and where climate or land use change will alter fire patterns, i.e., the
long-term spatial and temporal characteristics of fire events on a land-
scape. Manifestation of change will depend upon both the nature and
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strength of the drivers and their relative impacts in different regions.
There is evidence from historical patterns and modeling studies that

climate change will lead to large changes in fire extent and severity
(e.g., Westerling et al., 2006; Jolly et al., 2015; Abatzoglou and
Williams, 2016; Restaino and Safford, 2018). However, the relation-
ships between climate and fire are nuanced and complex (Krawchuk
et al., 2009; Bradstock, 2010; Doerr and Santín, 2016) and vary in
nature and strength geographically (Littell et al., 2009; Hessl, 2011;
Keeley and Syphard, 2017). One of the clearest factors that determines
whether a fire becomes large is wind speed (Abatzoglou et al., 2018).
Large, wind-driven fire events have been responsible for the vast ma-
jority of structures lost in California wildfires (Keeley et al., 2009),
including the recent fires in 2017 and 2018. Beyond weather, climate
controls fire size directly via temperature, and also via its short and
long-term effects on fuel volume and moisture content, which are im-
portant controls on fire behavior (Keeley and Syphard, 2016). Thus,
given that hot, dry conditions are generally associated with fire, and
that temperatures and moisture deficit are projected to increase glob-
ally, there is widespread concern that climate change will lead to
greater fire activity. However, feedbacks between climate, vegetation,
and fire are likely to mediate these effects (Bowman et al., 2014; Parks
et al., 2016; Syphard et al., 2018).

Adding to the complexity, changes in human land use and popula-
tion are also expected to alter spatial and temporal characteristics of
future wildfires, and these effects may also interact with climate-driven
effects. Humans affect fire patterns in a variety of ways, including de-
liberate or accidental ignitions, prescribed burning and mechanical
vegetation treatments, and suppression activities; humans also change
fire behavior and extent through landscape fragmentation, cultivation
practices, landscaping, and flammability of buildings. Given the di-
versity of these effects, recent studies highlight that one of the main
problems for prediction of fire patterns and related human impact is
that human presence may dampen or override the influence of climate
in driving fire activity (Higuera et al., 2015; Ruffault and Mouillot,
2015; Mann et al., 2016; Syphard et al., 2017b). Another complexity is
that the anthropogenic and biophysical factors that influence patterns
of small fires have been shown to differ from the factors that drive large
fires, particularly in areas where most fires are caused by humans
(Syphard et al., 2008, 2017, Barros and Pereira, 2014). This is likely
due to inherent geographical and biophysical differences between those
fires that are easily suppressed and those that escape control (Moritz,
1997; Hantson et al., 2015).

In California, the vast majority of fires are human-caused (Syphard
et al., 2007; Balch et al., 2017), but the spatial and temporal pattern of
ignition causes and patterns varies widely across the state (Keeley and
Syphard, 2018). Contrary to what might be expected, fire activity is not
highest where population is highest. Instead fire frequency, and to a
lesser extent, area burned, tend to peak at low- to intermediate popu-
lation and housing density (Syphard et al., 2007; Westerling and
Bryant, 2008; Mann et al., 2016); this relationship has also been ob-
served in other areas across the globe (Syphard et al., 2009; Aldersley
et al., 2011; Bistinas et al., 2013). This hump-shaped relationship re-
flects, in part the increased ignitions in rural and residential areas
(compared to wildlands), balanced against lower potential for fire
spread and/or greater suppression in urban areas (Butsic et al., 2015).

Beyond housing density’s effect on fire patterns, studies have shown
that structure loss in southern California is significantly correlated with
low-to-intermediate housing density (Syphard et al., 2012, 2013,
2016). Other work in southern California and Colorado (Alexandre
et al., 2016a), and a national analysis across the U.S. (Alexandre et al.,
2016b), identified the spatial arrangement of housing development, in
addition to topographic conditions, as consistently more important than
vegetation-related variables in explaining structure loss to wildfire.
Although small, isolated clusters of development were consistently as-
sociated with structure loss, in some cases, high housing density in
those clusters contributed to higher structure loss. In addition, high-

density development has been implicated in structure loss in some fires
due to fire spread among structures (Cohen and Stratton, 2008; Price
and Bradstock, 2013), as seen recently in the Coffey Park neighborhood
in Sonoma County, CA in 2017 (Nauslar et al., 2018). House-to-house
spread is also suspected for contributing to massive structure loss in the
Camp Fire in Butte County in 2018. The role of building codes and
ignition resistance has yet to be examined in such loss patterns, how-
ever.

Despite clear evidence of a nonlinear relationship between housing
density and patterns of fire, and subsequently on patterns of structure
loss, much is unknown regarding the scale and potential thresholds that
define the relationship between housing density and fire. For example,
Bistinas et al. (2013) reported regionally varying thresholds de-
termining the shape of the nonlinear relationship between population
density and area burned across the globe. Much more work is needed to
identify the relative roles of climate and human presence in de-
termining fire and structure loss patterns, and to determine the extent
to which these relationships vary regionally. This is particularly critical
considering there have already been rapid changes in both climate
patterns (Swain et al. (2018)) and land use patterns in flammable
landscapes (Radeloff et al. (2018)).

To better understand the relative importance of climatic and land
use factors on long-term spatial and temporal patterns of fire and
structure loss and how these patterns vary from region to region, we
developed an integrated modeling framework to quantify variable im-
portance and to map the distribution of current and future projected
probability of fires and structure loss in three California study areas.
These regions vary biophysically but have all experienced substantial
residential losses from wildfire. We first developed statistical models
and maps based on the association of climate, biophysical, and an-
thropogenic variables with small and large fire patterns, and then we
modeled structure loss as a function of those variables and the projected
probabilities of large fires. After quantifying and mapping current re-
lationships, we projected future large fire and structure loss probability
under different climate and housing growth scenarios. We address the
following questions:

1) How do fire patterns vary by housing density and climate?
2) How do structure loss patterns vary by housing density and climate?
3) Do these relationships vary from region to region?
4) Which is likely to be the most influential driver of future change,

climate or housing development, across our study regions?

2. Methods

2.1. Study areas

The northern coastal study area (NC) includes more than 1.4 million
ha of land spanning all of Lake, Sonoma, and Napa Counties, in addition
to small parts of Mendocino, Glenn, Colusa, Yolo, and Solano Counties
(Fig. 1). The vegetation is characterized by a mosaic of oak woodlands,
grassland, chaparral, and Douglas fir/hardwood (“mixed evergreen”)
forests, with montane conifer forests at higher elevations. Extensive
exurban development has occurred in recent decades, and numerous
homes have been destroyed by fire here; in particular, the 2017 ‘wine
country’ wildfires in this region resulted in 44 lost lives and nearly 9000
destroyed buildings.

The Butte and Plumas Counties study area (BP) included the full
counties, plus a 20 km buffer to incorporate a larger urban-wildland
gradient (2.2 million ha). Across this gradient spanning from the
Central Valley to the northern cismontane Sierra Nevada, the vegeta-
tion transitions from grassland and chaparral to mixed evergreen and
then pine- and fir-dominated forests, with a very small component of
subalpine forest on the highest peaks (Fig. 1). Although the higher-
elevation forests are mostly protected by the U.S. Forest Service and
National Park Service, substantial residential development has been
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Fig. 1. Boundaries of three California study areas, with destroyed structure locations (2000–2015) in pink (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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occurring in the foothills. Wildfires destroyed more than 1000 struc-
tures here between 2000 and 2015 (the period we used for modeling);
in 2018, the Camp Fire alone resulted in 86 fatalities and more than
18,000 destroyed structures. While all three study areas are char-
acterized by Mediterranean climates, with warm to hot, dry summers
and wet winters, BP is the only study area to receive substantial pre-
cipitation in the form of snowfall.

The third study area, coastal San Diego County (SD), is a rapidly
developing, highly fire-prone region with an extensive wildland-urban
interface. The majority of the study area is dominated by coastal sage
and chaparral shrublands intermixed with grasslands and mixed oak
woodlands, and some montane conifer forests at the highest elevations.
Native shrubs are threatened by too-frequent fire, typically human-
caused, which could lead to extensive replacement with more fire-prone
herbaceous vegetation (Syphard et al., 2018b). Thousands of structures
have been destroyed during large, Santa Ana wind-driven fire events
(Keeley et al., 2009).

2.2. Data

For all dependent and independent variables (Table 1), we first
assembled consistent statewide spatial data coverage, which we then
clipped to the boundaries of the three study areas. We also rasterized all
vector data, or resampled all grid data, to match the resolution of the
climate variables (270 x 270m).

2.2.1. Fire data
To determine whether different factors influence fire ignitions and

large fire patterns across the study areas, we created statistical models
based on two sources of data (Table 1). The first dataset included the
location of origin for all fires of any size from the most recent decade of
data available, 2003–2013 and was available via spatial coordinates
indicating the point location of fire ignition. The data, from the Na-
tional Interagency Fire Program Analysis, Fire-Occurrence Database
(FPA FOD), include fire size and date as attributes and are publicly
available for the whole country (Short 2014). Spatial clustering of
points has the potential to lead to autocorrelation, which can inflate the
accuracy of statistical distribution models (Veloz, 2009). Although we
were less interested in model accuracy than we were in variable im-
portance and maintaining comparability of model results, we never-
theless spatially filtered the presence data to ensure no duplicate points
within a 500-m radius, as spatial filtering can reduce the effect of
sample bias (Veloz, 2009). While this distance was not systematically
determined, this was the radius used in Syphard et al. (2018) that best
attained the appropriate number of samples per fire, using the method
described in Davis et al. (2017).

We developed a second dataset for large fire locations using a se-
parate comprehensive statewide fire perimeter database, provided by
the State of California Fire and Resource Assessment Program (FRAP,
http://frap.fire.ca.gov/data/frapgisdata-subset). We only considered
large fires from these data (>=40 ha), and, based on the method de-
veloped by Davis et al. (2017), we generated a random sample of points
within all fire perimeters from a baseline period of 1985–2015, the
most recent 30 years available. That is, to calculate the number of
random points to generate for each fire in the database, we took the
square root of the ratio of the given fire’s area to the area of the smallest
fire in the study area as recorded in this dataset. Because a filter dis-
tance of 500m resulted in too-small sample sizes for many of the fires,
we reduced the filter distance to 400m.

We considered the two fire datasets to capture two different pro-
cesses, where each process potentially has its own set of drivers. The
‘fire ignitions’ dataset reflects the spatial patterns of ignitions (which is
an outcome of fire initiation processes), whereas the ‘large fires’ dataset
reflects a discrete sample of burnt locations (which is an outcome of fire
spread processes).

2.2.2. Structure loss data
The dependent variable for the structure loss models was the loca-

tion of any structure that had been destroyed in a fire from 2000 to
2015 (Table 1). The baseline data were developed by Alexandre et al.
(2016), and included all destroyed structure locations across fires in the
U.S. from 2000 – 2010. These data were created by examining, for all
wildfires recorded in the Monitoring Trends and Burn Severity dataset
(MTBS, https://mtbs.gov), Google Earth historical imagery from the
closest dates before and after the fires. Within each fire perimeter,
Alexandre et al. digitized all buildings before the wildfire; then, any
building that had been completely removed in the post-fire image was
considered destroyed. To update and extend these data, we followed the
same methods using pre- and post-fire Google Earth imagery and di-
gitized buildings in all three study areas that were present through
2015. Additionally, we selected all fires from the most recent Cal Fire
historical perimeter database (2015 at the time of completion) and
added new structures that may have been missed by Alexandre et al.
(e.g., due to small fire size) or had occurred after 2010.

2.2.3. Topographic data
Terrain-related variables are typically included in fire behavior and

distribution models due to their direct influence on fire behavior and
indirect influence on fuel characteristics and flammability (Bond and
van Wilgen 1996, Pyne 1996); and they have also been significantly
associated with structure loss to wildfire due to exposure (Syphard
et al., 2012, Alexandre et al. 2016). Therefore, we considered a range of
topographic variables in both the fire and structure loss models, in-
cluding slope, topographic variability, and topographic position
(Table 1).

2.2.4. Climate data
We considered a range of historical and projected future climate

variables, which were developed by Flint and Flint (2012) and updated
through 2017 using the California Basin Characterization Model
(https://ca.water.usgs.gov/projects/reg_hydro/basin-characterization-
model.html (Table 1). The data were available annually at 270m re-
solution. We processed the annual data to create 30-year baseline sta-
tistical summaries from 1981 to 2010 as well as decadal future pro-
jections from 2020 to 2050. To ensure consistency with state
recommendations (Kravitz, 2017), we compared two scenarios of future
climate conditions from complementary CMIP-5 General Circulation
Model projections regarded as relevant for California. The scenarios
were CNRM-CM5 and MIROC5, which represent “warm/wet” and “hot/
dry” conditions, respectively. Despite this characterization both sce-
narios have substantial spatial and temporal variation in projected
conditions, but should still provide meaningful bookends for re-
presentative climate spaces. For both scenarios, we used the RCP 8.5
“business as usual” emissions scenario (RCP scenarios are generally
similar through 2050 and only diverge in the second half of the cen-
tury).

For the fire models, we considered a combination of temperature
and moisture-related climate variables that have had significant asso-
ciations with fire patterns in other studies due to their effects on energy
and moisture gradients that influence wildland fuel condition and
abundance (e.g., Whitman et al., 2015; Parisien et al., 2016; Davis
et al., 2017). We also included actual evapotranspiration (AET) and
climatic water deficit (CWD) in all models, as these variables have been
used to account for changes in fuel abundance (AET) and moisture
(CWD) (Krawchuk et al., 2014, Parks et al., 2016, Mann et al., 2016).
We did not include temperature and precipitation in the structure loss
models because we assumed their influence on structure loss would be
indirect, via their effects on large fire probability. On the other hand,
given that AET and CWD served as proxies for vegetation, and that
vegetation adjacent to structures could be influential beyond the effect
on large fire probability, we did include these variables.
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2.2.5. Land use projections and anthropogenic data
Our primary source of land use data were maps of current and fu-

ture projected housing density that were published in Mann et al.
(2014). The historical data were collected from the U.S. Census long
form with models trained using historical trends from 1940 to 2000
(the latest date that the long form was available). The predictions of
housing density were provided in decadal time steps, and we used the
2009 forecast as our baseline here. Created using longitudinal census
data, the model calculated the total number of new houses based on
demographic forecasts at the national level, and then allocated them to
split-block units based on a spatio-temporal estimate of housing den-
sity. We considered two scenarios, one with concentrated urban de-
velopment (“urban scenario”) and the other that favored rural expan-
sion (“rural scenario”). In the “urban development” scenario, an
additional 25% of all new housing was added into urban areas (density
greater than 1 house per acre), while the “rural growth” scenario pu-
shed the 25% into areas with less than 1 house per acre.

Housing density data were initially provided as vector data, with
housing density listed as an attribute for each polygon. We converted
these data into 270m raster layers using housing density as the value to
grid. In previous studies of structure loss to wildfire, two additional
variables, the size of the housing cluster and the distance from each
structure to the edge of development, were found to be highly sig-
nificant (Syphard et al., 2012; Alexandre et al., 2016a, 2016b). Given
that those data had been created using point locations of all structures,
we developed an approach to devise similar housing clusters by
thresholding and creating borders around polygons with at least 0.01
housing units per ha, which was the value that resulted in the best fit to
the data created for San Diego County (Syphard et al., 2012). The
housing density variables were available for the same time periods as
the climate data, with 2009 representing current conditions, and dec-
adal projections until 2050 for the two growth scenarios. Thus, for
models using baseline climate data for 1981–2010, we used housing
data from 2009; and for models using climate projections from 2019 to
2029, we used the housing projection for 2029, etc.

In addition to the housing projections, we included three other
variables that have been significantly associated with fire occurrence
patterns in other studies (e.g., Mann et al., 2016; Syphard et al., 2018).
These included proximity to primary and secondary roads, which are
often associated with human-caused ignitions (Syphard and Keeley,
2015); proximity to public land, which typically consists of large un-
interrupted swaths of wildland vegetation; and distance to census po-
pulated places where the city includes at least 10,000 residences (Mann
et al., 2016). These maps remained static for future projections.

2.3. Statistical modeling

We used Maxent 3.3.3k to estimate variable importance and project
mapped probabilities of current and future fires and structures loss
(Phillips and Dudik, 2008; Elith et al., 2011). A statistical machine
learning method, MaxEnt estimates the best approximation of a dis-
tribution via iterative comparisons between values of the environ-
mental predictor variables at the location of presence locations (i.e., all
fires, large fires, destroyed structures) versus the values of the same
variables at 10,000 randomly located background points. The best
distribution is identified as the one with maximum entropy, and the
model outputs a continuous grid with each cell assigned a relative
suitability of occurrence from an exponential function. Recognized as
one of the top-performing species distribution models (Elith et al.,
2006), MaxEnt has also been successfully used in a range of wildfire
analyses and mapping applications (e.g., Bar-Massada et al., 2012;
Batllori et al., 2013; Parisien et al., 2016; Davis et al., 2017; Tracy et al.,
2018).

We developed separate models for all fires and large fires to in-
vestigate potential differences in variable importance. We also tested
the output of both models as potential predictors for the structure loss
model, but we found significant correlation between the output of the
small fire model and distance to roads. Given that most homes are
destroyed in large fires, we decided to only use the output of the large
fire probability model as a predictor variable for the structure loss
model.

We initially developed all models with the full range of climatic,
topographic, and anthropogenic explanatory variables to compare
variable importance. For projecting future conditions, we employed a
variable selection and model tuning process separately for each of the
three study regions to ensure the best model fit. We first used ENMTools
(Warren et al., 2010) to calculate Pearson correlation coefficients for all
explanatory variables using current conditions (baseline) in each study
area. For any pair of variables with a correlation coefficient of
r> =0.8, we retained the one that had a higher mean cross-validated
receiver operating characteristic curve (AUC, Fielding and Bell, 1997),
based on univariate models.

We used most of the default parameters for the MaxEnt modeling,
except that we used only linear, quadratic, and product features for all
models, and selected regularization multipliers, that avoid overfitting
by penalizing complex solutions, by running models in 0.5 increments
from 0.5 to 5. The final model was chosen by selecting the multiplier
that resulted in the lowest Bayesian Information Criterion (BIC). For the
baseline models of all and large fires, and structure loss, we ran five
cross-validated model replicates to obtain mean permutation im-
portance values and mean out-of-sample AUCs. We averaged the pre-
dicted values from the five replicate output maps to produce the
baseline maps, which are interpreted as grids of mean predicted prob-
ability of large fires or structure loss given the environment in each
study area.

After conditioning the models on the baseline time period, we then
projected the averaged baseline models of large fires and structure loss
onto maps representing future conditions at each time step for all
combinations of future climate (two scenarios) and land use (two sce-
narios) projections. For each future time step, we first projected large
fires, and then used those projections as input to the structure loss
models.

2.4. Analysis

We averaged large fire probability and structure loss probability for
all maps generated as model output by first summarizing the predicted
probabilities across all grid cells in every map, then dividing this sum
by the total number of cells in the maps of the three study areas. We
calculated these numbers for all model replicates in all time periods and
for all climate/land use scenario combinations. The probability
averages for current conditions served as a baseline to compare with the
probability averages of future scenarios, which allowed an overall es-
timate of whether fire or structure loss probability went up or down
across the region.

To identify the housing density where most structure loss occurs in
each study area, we extracted the housing density of destroyed struc-
tures from the baseline housing density maps generated by Mann et al.
(2014). We then compared the mean housing density of destroyed
structures in each study area with the underlying housing density in
each region (i.e., all burned and unburned structures), which we de-
termined by multiplying the area of each polygon in the study area by
its housing density as indicated in the attribute table. This calculation
assumed housing density was evenly distributed across polygons. For
polygons that overlapped the study area boundary, we calculated the
number of units in the entire polygon, then prorated by the percentage
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of the polygon within the study area. For both destroyed and the total
structures in each study area, we plotted and compared their mean and
distribution across housing density classes.

To compare the mean housing density data in our study areas to the
recent destructive fire events of 2017 and 2018, we additionally acquired
point locations for the destroyed structures in the 2017 Tubbs, Nunn, Atlas,
and Pocket Fires in Sonoma and Napa Counties (number destroyed=
8022; http://sonomamap.maps.arcgis.com/apps/webappviewer/index.
html?id=5af1dd01cb9b446db928abe51a259763), the 2018 Camp Fire
in Butte County (number destroyed=18,804; https://calfire.app.box.
com/s/z03vd6hoikxa94ey25m0kuq2fsq2ln5e/folder/64813192070), the
2018 Carr Fire in Shasta County (number destroyed=1614; https://www.
arcgis.com/home/item.html?id=17d44552e0ea4c6ab2c43e80246e05b9),
and the 2018 Woolsey Fire in Los Angeles and Ventura Counties (number
destroyed=1673; provided from Cal Fire to the National Park Service,
Robert Taylor personal communication). All of these data were provided as
part of the Cal Fire Damage Assessment and Fatality Totals (DINS) pro-
gram. We used the same methods as above to calculate the mean housing
density for destroyed and total number of structures. We calculated the
total number of structures within the county boundaries where the fires
were located.

To map geographical variation in structure loss probability by land
use scenario, we subtracted the mapped probability of structure loss
projected in the rural growth scenario models for year 2049 from the
corresponding mapped probability of structure loss in the urban growth
scenarios.

3. Results

3.1. Baseline statistics

From 2000–2015, there were 2081 structures destroyed in the NC
study area. These destroyed structures were distributed across 17 out of
a total of 202 fires during the same time period (based on the Cal Fire
perimeter data). The mean size of fires where structures were destroyed
(includes entire perimeters of those intersecting study area) was
5525 ha versus an overall mean fire size of 896 ha. In the BP study area,
there were 451 destroyed structures that burned through 2015 in 39 out
of 241 fires. The mean fire size with destroyed structures was 4018 ha

versus a mean of 905 ha overall. In SD, 4338 structures were destroyed,
across 20 fires out of a total 206 fires. The mean fire size when struc-
tures were destroyed was 150,647 ha versus a total mean of 1877 ha.

The mean density of destroyed structures was much lower than that
of all structures in all study areas, by orders of magnitude (Fig. 2). This
pattern was the same for density of destroyed structures versus all
structures within counties in the recent fire events of 2017 and 2018
(Fig. 2), although the difference between destroyed and all structures
was only about half for the Camp Fire and about a third for the 2017
North Coast fires. The distribution of housing density for both destroyed
and all structures varied by study region, but destroyed structures were
consistently located in low-density classes (Fig. 3).

Projected future trends in temperature and precipitation varied
across regions for the two different climate scenarios, as did the overall
housing density change. In the NC and BP study areas, the mean annual
precipitation resulted in conditions with consistently more moisture in
the CNRM scenario and consistently drier conditions in the MIROC
scenario by 2049, with slight geographical variability (Fig S1a&b). Both
GCMs projected decreased annual precipitation in the SD study area,
but the drying was stronger for the MIROC scenario (Fig. S1c). The
changes in summer precipitation showed much more geographical
variability within study regions, but the differences in GCMs were
flipped such that CNRM was projected to be drier in the summer than
MIROC (Fig. S2a-c). Annual temperature was projected to increase
much more substantially in the MIROC than the CNRM scenario for all
three study areas by 2049, with substantially more geographical var-
iation in the CNRM scenario (Fig. S3a-c). Decadal fluctuations, re-
flecting idiosyncrasies of the model run, were strongest in MIROC in the
North Coast.

Changes in projected housing density patterns from 2009 to 2049
show substantial geographical variability across all three study regions
(Fig. 4). For all regions, the rural scenario showed a larger areal in-
crease of housing densities within the range where houses have been
destroyed historically (Fig. 4); but the difference in rural versus urban
scenarios was most substantial in NC, followed by SD, then BP. In the
rural scenario, most of this increase in low-density housing occurred via
growth (i.e., increased housing density) across more rural parts of the
landscape, whereas in the urban scenario, a larger portion of exurban
areas declined in housing density as there was a shift to more

Fig. 2. Mean housing density for destroyed and all structures in three California study areas (using data through 2015) and for the four largest destructive fire events
in 2017 and 2018.
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concentrated high-density housing near urban areas (Fig.4). One ex-
ception is the northern coastal portion of the SD study area, where there
was some housing density decline in the rural scenario.

3.2. Variable importance

There were large differences in model variable importance for fire
ignitions vs. large fires for all three study areas, and these were much
larger than differences among regions (Table S1 – S2,Fig. 5). In parti-
cular, anthropogenic variables, particularly proximity to roads, domi-
nated the patterns of fire ignitions, whereas topography and climate
variables dominated the patterns of large fires, except in SD, where
both housing density and distance to roads had about the same im-
portance as topography and climate for large fires. In SD, housing
density was almost equally as important as climate for explaining large
fires. The directions of relationships differed such that fire ignitions
tended to occur in close proximity to roads or populated places, but
large fires occurred closer to public lands and farther from roads and
populated places.

Whereas climate variables had a strong influence on fire ignitions
and especially large fires, the vegetation productivity and moisture
variables (AET and CWD) were not important for explaining structure
loss patterns in NC or BP (Table S3 – S4, Fig. 5), and were less important
than fire suitability for SD. Instead, housing variables and large fire
suitability were the two most important factors explaining structure

loss across all regions, with higher structure loss Univariate response
curves showing the probability at low housing density (Fig. 6). SD was
again different than NC or BP in that housing variables were more
important than fire suitability.

3.3. Future projections

Overall, NC had a slightly lower baseline probability of large fires
across the study area (Fig. 7a) than BP or SD, which had similar base-
lines (Fig. 7 b & c). Projections of future large fire probability were
higher than the baseline for most time periods and climate scenarios for
both the NC and BP study areas, except for MIROC in 2029 and 2049 in
NC and CNRM 2019 in BP, and the results from these decades reflected
oscillations that stemmed from decadal variability in the climate model
projections. Large fire probability did not significantly change under
either climate scenario in SD (Fig. 7c), but there was also slight decadal
variability in the model run for CNRM. In all cases, differences in
projected large fire suitability between the two land use scenarios were
virtually absent due to the small relative importance of these variables
to the model.

Compared to NC and BP (Fig. 8a & b respectively), SD had a rela-
tively high baseline structure loss probability across the landscape
(Fig. 8 c). Differences in structure loss probability for the two climate
scenarios in NC and BP generally mimicked the large fire probability
results in ranking and magnitude, and the decadal variability in fire

Fig. 3. Distribution of housing density classes (structures/ha) for destroyed and all structures in the a) North Coast, b) Butte-Plumas, and c) San Diego County study
areas.
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probability for SD that came from climate model projections was re-
flected in the CNRM result. Compared to large fire probability, there
was a much stronger effect of land use scenario on structure loss pro-
jections, and more variation in which scenarios exceeded baseline for
NC (Fig. 8a) and SD (Fig. 8b). BP showed little variation in either cli-
mate or land use scenario probabilities. In NC, the rural land use sce-
nario had a much larger probability of structure loss overall, and for
CNRM, this difference generally determined whether probability would
increase or decrease relative to the baseline. The rural scenario also
resulted in higher overall structure loss probabilities in SD, but this was
mostly apparent in 2049.

While structure loss was higher overall across regions and climate
scenarios in the rural land use scenario (Fig. 8), there was considerable
spatial heterogeneity in the effect of the land use scenario (Fig. 9).
Comparing the rural land use scenario to the urban scenario in NC and
SD, there were small changes to structure loss probabilities across most
of the currently semi-urban and urban areas and large increases in
structure loss probabilities in the currently rural areas (compare Fig. 9
to Fig. 4). In contrast, BP had locations of large increases and decreases
in structure loss probabilities under the rural land use scenario com-
pared to the urban land use scenario. However, all three regions had
higher predicted structure loss in areas where there was an increase in
low-density housing.

4. Discussion

Our projections suggest that both climate and land use will drive
future changes in patterns of wildfire and subsequent likelihood of
structure loss; but the relative importance and strength of different
drivers will vary across and within different regions. Future changes
will depend upon the nature and degree of change in both climate and
land use relative to current conditions. For example, locations with
increased low density rural housing are likely to see increased structure
loss even in decades with lower large fire probabilities (compare dec-
ades 2029 and 2049 in Figs. 7a and 8a). Changes will also vary ac-
cording to the strength and nature of regional relationships among
climate, land use, fire patterns, and structure loss, with potential
feedbacks among these drivers. Despite these complexities, which un-
derscore the importance of customizing policy and management by
geographical location (Keeley et al., 2009; Moritz et al., 2014), there
were also key commonalities across regions. In particular, structure loss
mostly occurred at fairly low housing densities. While more work needs
to be done to create models that incorporate short-term weather con-
ditions, such as wind, and feedbacks among drivers, we believe that the
central importance of housing density to structure loss may be generally
applicable to fire-prone landscapes.

Fig. 4. Classified housing density in 2009, 2049 for the rural, and 2049 for the urban scenarios in the a) North Coast, b) Butte-Plumas, and c) San Diego County study
areas. The middle (yellow) class represents the housing density range across the three study areas where structures have been destroyed in the past (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article).
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4.1. High anthropogenic variable importance for fire ignitions, but not large
fires

One commonality across regions was that anthropogenic variables
were most important in explaining patterns of fire ignitions, whereas
large fires were more related to topography, climate, and fuel (via AET
and CWD). This finding is not surprising given that most fires in
California are started by humans (Syphard et al., 2007; Balch et al.,
2017), near human infrastructure (Syphard and Keeley, 2016). The
finding is also consistent with other studies that have shown differences
between the drivers of small and large fires (e.g., Syphard et al., 2008,
2016, Barros and Perreira, 2014; Abatzoglou et al., 2018) and that large
fires are more likely to occur in remote areas where fuel continuity is
greater, with severe winds better able to propagate fires via long-dis-
tance ember production, and access to suppression is lower (Gray et al.,
2014). The consistency with other studies, and across divergent regions
in this study, has important considerations for management. For ex-
ample, ignition prevention efforts may be most effective if geo-
graphically concentrated near roads and development. Thus, land use
change may generally be the biggest concern for preventing fires from
starting; but climate change, in addition to weather and fuel patterns,
may be more critical in the consideration of large fire behavior. One
exception is that, unlike other human-caused fire sources, powerline-

Fig. 5. MaxEnt variable permutation importance for fire and structure loss models in three California study areas, with variables grouped into categories. The fuel
category for structure loss consisted of actual evapotranspiration and climatic water deficit.

Fig. 6. Probability of structure loss relative to housing density (units/ha) for
three California study areas, averaged across 5 model replicates.
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ignited fires tend to occur in more remote areas during severe weather,
and these fires often result in large areas burned with substantial
human losses (Keeley and Syphard, 2018). Understanding the relative
importance of anthropogenic variables is critical given expected
changes in human land use with resulting downstream impacts on de-
liberate or accidental ignitions, prescribed burning, mechanical vege-
tation treatments, and fire suppression.

The timing of ignitions, particularly corresponding with extreme
fire weather, may be the most important variable to consider in de-
termining whether fires become large and potentially destructive to
human assets (Syphard et al., 2016; Abatzoglou et al., 2018). Historical
analysis has also shown there to be an overall low correlation between
fire frequency and area burned in California (Keeley and Syphard,
2018). Thus, small, frequent fires caused by human ignitions do not
necessarily lead to highly destructive fires. Instead, the fires most likely
to cause structure loss tend to be ignited in low-intermediate population
or housing density (Syphard et al., 2007, 2009), adjacent to areas of
high fuel loading.

Studies of historical fire-climate relationships in California (Keeley
and Syphard, 2015, 2016) and across the U.S. (Littell et al., 2009;
Parisien and Moritz, 2009; Syphard et al., 2017a; Littell et al., 2018)
show differences in the strength and nature of climatic control over fire
activity. In particular, those areas where fire is most strongly explained
by climate in California are in northern, higher-elevation parts of the
state, whereas in southern CA, fire-climate relationships have

historically been weak (Keeley and Syphard, 2016). Other studies have
shown fire-climate relationships to be weaker in areas with higher
human presence (Higuera et al., 2015; Ruffault and Mouillot, 2015;
Mann et al., 2016; Syphard et al., 2017b), and this is supported in our
results, with the SD study area having both the highest overall housing
density and the weakest link between climate and large fire suitability.
SD was also the study area with the strongest relationship between
anthropogenic variables and patterns of large fire suitability.

4.2. Predicted future wildfire varied less across scenarios than structure loss

Given the weak ties between climate and large fire suitability in SD,
there were no major changes projected for large fires here, which is an
important result given widespread concern that climate change will be
responsible for increasing future fire activity across the western U.S.
(Westerling et al., 2006; Barbero et al., 2015; Abatzoglou and Williams,
2016). Nevertheless, there could be other types of indirect climate
change effects on fires in southern CA, such as long-term drought
(Keeley and Zedler, 2009), vegetation type conversion facilitated by
drier conditions (Jacobsen et al. (2007); Park et al., 2018; Syphard
et al., 2018b), or changes in wind patterns (Guzman‐Morales et al.
(2016)). For the other two study areas, climate change was projected to
increase large fire probability by the middle of the century, which
corresponded to at least part of the increase in structure loss probability
in these regions. In all regions, it is important to acknowledge that,

Fig. 7. Total projected probability of large fires under two climate and two land use scenarios for a) North Coast, b) Butte Plumas, and c) San Diego.
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despite inclusion of AET and CWD as proxies for fuel amount and
condition, fire-vegetation feedbacks or vegetation type changes were
not accounted for, and these could play an important, yet undetermined
role in future fire activity (Syphard et al., 2018).

Particularly in the NC study area, land use change scenario played a
major role in differences in structure loss probability, due to the sig-
nificant relationships found in the baseline models as well as the nature
of projected change in the rural versus urban scenarios. That is, there
was substantially more expansion of low-density housing in the rural
scenario versus the urban scenario in the NC study area, corresponding
with the densities where most structures have been destroyed (i.e., the
middle class in Fig. 4). This was true in BP and SD as well, but to a lesser
extent. Also, for the urban scenario projections in all regions, and the
rural projections for SD, there were both increases and decreases in
housing density across the landscape; this patchwork of change may
have dampened the apparent effect of land use on future projections of
either fire or overall structure loss probability. Another important
consideration is that structure loss probability may shift over time in
response to changing density patterns. In other words, as some lower-
density developments fill in with new homes, they may become less
susceptible in the future; this is the likely reason that structure loss
probability was projected to decline in some scenarios and time periods.

In modeling the decadal projections, we attempted to understand
how different growth trajectories influenced model outcomes. For ex-
ample, a region may initially experience low-density housing develop-
ment in 2020–2030 that transitions to high density development by
2050. We hypothesized that either large fire or structure loss prob-
ability might thus vary through time as a function of the underlying

housing density. However, given that land use was not one of the most
important predictors of large fires, we did not observe a strong effect of
oscillating housing density on fire projections. Instead, the up and down
behavior in large fires, particularly in NC under MIROC, was due to
idiosyncratic oscillations in climate projections that resulted from the
climate model. For projections of structure loss, there was continued
growth of low-density housing in the rural scenario for NC, which re-
sulted in consistently higher structure loss probabilities over time. On
the other hand, some areas of low-density development converted into
high density development in San Diego County, which led to a net
decline of structure loss probability by 2049. Overall, however, the
biggest differences in effect of housing density was via the higher
concentration of high-density development in the urban versus rural
scenarios.

It is important to clarify that the land use scenarios were not meant
to reflect precise changes but were designed to emphasize possible
differences based on housing density and general trends towards urban
or rural development. The land use change model tended to emphasize
temporal and spatial spillovers; that is, any projection of housing den-
sity change in largely uninhabited areas first required either a history of
growth or a spillover of growth from neighboring polygons, and this
may have limited spatial expansion of housing in those areas. In other
words, the model results, particularly for the rural growth scenario may
understate the risks associated with low-density development. Further,
we also assumed that road proximity, the distance to urban areas (areas
with > 10,000 residences), and the proximity to public land would
remain unchanged over time, suggesting the results here are con-
servative.

Fig. 8. Total projected probability of structure loss under two climate and two land use scenarios for a) North Coast, b) Butte Plumas, and c) San Diego.
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4.3. Higher structure loss was seen in low density development

Regardless of future projections, one of the striking commonalities
in the results was that observed structure loss occurred in larger fires
and at lower housing densities than the averages for the regions. There

are two different statistics related to housing density that are closely
related but distinct. The first is the probability of structure loss for any
house given its density (i.e., Fig. 6), and the other is the total number of
structures lost at different housing densities (i.e., Fig. 3). Our results
showed that probability of structure loss is negatively related to

Fig. 9. Projected differences in structure loss probability at 2049 between the rural and urban density land use scenarios for CNRM and MIROC in the a) North Coast,
b) Butte Plumas, and c) San Diego study areas.
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housing density in all regions, and while most destroyed structures
were located in lower housing density classes, some structures were
also destroyed at high densities. The association between structure loss
and housing pattern has been documented in recent studies (Syphard
et al., 2012, Alexandre et al. 2016, Kramer et al., 2018), and there has
long been an assumption that fire risk is highest at the Wildland-Urban
Interface (WUI), where houses meet or intermingle with wildland ve-
getation, both in the U.S. (e.g., Radeloff et al., 2018, Mell et al., 2010)
and internationally (e.g., Lampin-Maillet et al., 2010; Montiel Molina
and Galiana-Martín, 2016; Argañaraz et al. (2017)). However, the oc-
currence of several highly catastrophic wildfire events within high-
density developments (e.g., Cohen and Stratton, 2008; Price and
Bradstock, 2013; Nauslar et al., 2018), including recent California
events, combined with previous lack of data associating changes in fire
losses to changes in development patterns (McCaffrey et al. https://
fireadaptednetwork.org/fire-narratives-accurate/) have led to ques-
tions and debate over which are the most dangerous development
patterns.

Thus, one of the most important results of this study is that, even
considering the massive numbers of structures that were destroyed in
the last two years in wind-driven fire events, the overall mean housing
density where houses are most likely to be destroyed (0.08 to 2.01
structures/ha pre-2015 and 1.24–3.61 in recent events) was more than
an order of magnitude lower than the average housing density on the
landscape for most cases (except the Camp Fire where the destroyed
structure density was about 50% lower and the 2017 North Coast Fires,
where the destroyed structure density was about 66% lower than total
structures). The recent wildfires were uncharacteristic in the sheer
number of structures and lives lost relative to historical numbers, in
addition to the fact that wildfires did reach and enter parts of high-
density urban areas in Coffey Park (Tubbs Fire), Paradise (Camp Fire),
and the city of Malibu (Woolsey Fire). Thus, a lot more research is
needed to understand how and why so many structures were lost. One
clear factor were the wind speeds in these events, in addition to ap-
parently substantial structure-to-structure spread and incendiary ember
ignitions in which the houses themselves were more flammable than the
nearby vegetation. Nevertheless, the losses in urban areas were still
only a portion of the total number of structures destroyed in these fires,
and thus they do not change the main conclusions of our study: overall,
most structure loss tends to occur in areas of low-density development.
One caveat is that we calculated housing density using data from the
2000 Census projected to 2009 as a baseline, and thus housing density
has likely changed since then. However, the relative comparisons likely
still hold because we consistently used the same housing data. Another
recent study reported that the majority of threatened and destroyed
structures from the last 30 years in the U.S. were located within the
WUI; furthermore, when destroyed houses were not located in the WUI,
the most common reason was that the housing density was lower than
that in the WUI definition (Kramer et al., 2018).

The most likely explanation for this striking consistency is that
housing patterns largely reflect exposure to wildfire. That is, wildfires
typically burn through vegetation; and thus, those homes most inter-
spersed with vegetation are most likely to encounter a wildfire in the
first place, or be hit by incendiary embers. The reason for occasional
catastrophic wildfire losses in high density areas is that, once exposed
to a fire, a community with closely spaced homes made of flammable
materials can lead to rapid house-to-house spread, particularly during
severe weather conditions. In these cases, like the Tubbs fire in 2017
and Camp fire in 2018, the house itself becomes the fuel that propagates
the fire.

Therefore, in terms of addressing conflicts between housing and
wildfire in the future, the most effective mitigation may be land use and
urban planning decisions that reduce the exposure of homes to wildfires
(Syphard et al., 2013, 2016, Butsic et al., 2017). However, mitigation
measures focused on defensible space and fire-safe construction mate-
rials, particularly when houses are closely spaced, are also critical for

preventing future losses (Syphard et al., 2015, 2017c), as are other
traditional fire management practices such as fire suppression and
strategic location of fuel breaks to allow safe firefighter access to defend
homes.

4.4. Conclusion

Looking at fire ignitions, large fires, and structures burned, we ex-
plored the importance of climatic and human variables for explaining
fire and structure loss patterns across three diverse California land-
scapes, under current and future climate (hot-dry or warm-wet) and
land use (rural or urban residential growth) scenarios. Across regions,
we found that housing and human infrastructure were more responsible
for explaining fire ignitions and structure loss probability. Large fires
were better explained by climate, topography, and fuel variables. The
differing strengths of these relationships interacted with the climate
and land use scenarios, resulting in variability across regions in the
relative importance of climate and housing patterns on fire and struc-
tures burnt. Focusing only on empirical housing density and structures
burnt, we found that most structure loss occurred in areas with low
housing density (from 0.08 to 2.01 units/ha), and as such, expansion of
rural residential land use generally increased projected structure loss
probability in the future. Both the historical results and the future
projections highlight that future changes are likely to be complex and
will result from a range of interacting factors. Climate change will be
important to consider for managers and policy makers in some, but not
all regions. In all areas, land use change merits increased attention, as
local policy decisions can influence future patterns of development and
exposure of structures to risk of loss in large wildfires.
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