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Figure 1: Electricity generation from renewables in 2015 and 2050. In 2050, nuclear power still accounts for negligible 0.3% of 
the total electricity generation, due to the end of its assumed technical life, but could be phased out earlier 

  The simulations of the global power sector in this study were made until 2050. Yet, with favorable political frameworks, the transition to 100% 
renewable energy can be realized earlier than 2050. 





Figure ES-1: Share of electricity generation from renewable sources in 2015 and 2050. Gas capacities in 2050 only use 
renewable based gas. In 2050, nuclear power still accounts for a negligible 0.3% of the total electricity generation, due to 
the end of its assumed technical life, but could be phased out earlier.



Table ES-1: Installed capacities of power and storage technologies across the major regions for the global energy 
transition in the representative years 2015, 2030 and 2050. Abbreviations: MENA – Middle East and North Africa, SSA – 
Sub-Saharan Africa, SAARC – South Asian Association for Regional Cooperation, NE-Asia – Northeast Asia, SE-Asia – 
Southeast Asia, N-Am – North America, S-Am – South America.  



Figure ES-2: Share of storage technologies in the overall output in 2015 and 2050. Gas storage in 2050 is based 
entirely on renewable resources. 



Figure ES-3: Total LCOE of global power supply in 2015 and 2050.  



Figure ES-5: Jobs created globally during the energy transition from 2015 to 2050. Gas capacities in 2050 only use 
renewable based gas.  

Figure ES-4: Decline in greenhouse gas (GHG) emissions during the energy transition from 2015 to 2050 from the 
power sector in different regions around the world.  



Figure ES-6: Total losses (primary to secondary energy conversion, storage, curtailment and grid) of the global power 
system in reference to final electricity demand during the energy transition from 2015 to 2050.  







Figure 1: Total installed renewable energy capacity in 2016 globally (left)   and shares of annual power generation 
technologies installed globally from 2010 to 2014 (right). 



Figure 2: Electricity generation from different sources and share of renewable electricity in total generation across the 
various energy scenarios considered.  The reference scenario for the year 2012 is based on Teske et al.  For WWF 
and Shell scenarios the values are for final consumption; for WWS electricity generation is estimated from 
supplementary materials; and for the rest the values indicate electricity generation. 





Figure 3: The global map with the nine major regions constituted by the corresponding sub-regions.  

Table 1: The nine major regions and the corresponding countries imparted into the LUT Energy System Transition 
model.  



Figure 4: Key inputs and outputs of the LUT Energy System model.  





Figure 5: The schematic representation of the LUT Energy System model for the power sector representing the 
various RE sources for power generation, transmission options, storage technologies and power demand sectors. 

Table 2: List of power generation, storage and transmission technologies considered in the LUT energy system model 
and their brief descriptions. 





Figure 6: Global mapping of annual full load hours for solar PV with single-axis tracking (left) and onshore wind at 150 
m hub-height (right).  



Figure 7: Development of average electricity consumption per capita globally and in OECD countries, growth in 
population from 2015 to 2050 (left) and the global synthetic load profile in 2050 (right). 

Figure 8: Historical power plant infrastructure development with annual installed capacities. 





Figure 9: Methodology for the estimation of job creation during the energy transition adopted from Rutovitz et al. 
Wherein, EF stands for Employment Factor. The calculations are applied to all technologies. 



Figure 10: Global – Cumulative installed capacities of various power generation technologies from 2015 to 2050 (left) 
and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 2050 
(right).  



Figure 11: Global – Net electricity generation by various power sources from 2015 to 2050 (left) and relative shares of 
electricity generation by various power sources from 2015 to 2050 (right).  

Figure 12: Global – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) and net 
output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only stored SNG. 
The output of stored bio-methane is not classified as part of gas storage output even though it contributes significantly 
to the need of gas storage capacity (left). Bio-methane represents 51% of gas consumed globally, and is instead 
accounted as bioenergy generation.  





Table 3: Global – Installed cumulative capacities and net electricity generation by various power sources; installed 
capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 
intervals.  



Figure 13: Europe – Cumulative installed capacities of various power generation technologies from 2015 to 2050 (left) 
and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 2050 
(right).  



Figure 14: Europe – Net electricity generation by various power sources from 2015 to 2050 (left) and relative shares 
of electricity generation by various power sources from 2015 to 2050 (right). 

Figure 15: Europe – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) and net 
output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only stored SNG. 
The output of stored bio-methane is not classified as part of gas storage output even though it contributes significantly 
to the need of gas storage capacity (left). Bio-methane represents 90% of gas consumed in Europe, and is instead
accounted as bioenergy generation. 



Table 4:  Europe – Installed capacities and net electricity generation by various power sources; installed capacities 
and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year intervals.  





Figure 16: Eurasia – Cumulative installed capacities of various power generation technologies from 2015 to 2050 (left) 
and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 2050 
(right).  



Figure 17: Eurasia – Net electricity generation by various power sources from 2015 to 2050 (left) and relative shares 
of electricity generation by various power sources from 2015 to 2050 (right). 

Figure 18: Eurasia – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) and net 
output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only stored SNG. 
The output of stored bio-methane is not classified as part of gas storage output even though it contributes significantly 
to the need of gas storage capacity (left). Bio-methane represents 30% of gas consumed in Eurasia, and is instead 
accounted as bioenergy generation. 



Table 5: Eurasia – Installed capacities and net electricity generation by various power sources; installed capacities 
and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year intervals.  





Figure 19: MENA – Cumulative installed capacities of various power generation technologies from 2015 to 2050 (left) 
and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 2050 
(right).  



Figure 20: MENA – Net electricity generation by various power sources from 2015 to 2050 (left) and relative shares of 
electricity generation by various power sources from 2015 to 2050 (right).  

Figure 21: MENA – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) and net 
output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only stored SNG. 
The output of stored bio-methane is not classified as part of gas storage output even though it contributes significantly 
to the need of gas storage capacity (left). Bio-methane represents 15% of gas consumed in MENA, and is instead 
accounted as bioenergy generation.  



Table 6: MENA – Installed capacities and net electricity generation by various power sources; installed capacities and 
net output of various storage sources during the energy transition from 2015 to 2050 at 5-year intervals.  





Figure 22: Sub-Saharan Africa – Cumulative installed capacities of various power generation technologies from 2015 
to 2050 (left) and new installed capacities of various power generation technologies for every 5-year interval from 
2015 to 2050 (right).  



Figure 23: Sub-Saharan Africa – Net electricity generation by various power sources from 2015 to 2050 (left) and 
relative shares of electricity generation by various power sources from 2015 to 2050 (right).  

Figure 24: Sub-Saharan Africa – Cumulative installed capacities of various storage technologies from 2015 to 2050 
(left) and net output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes 
only stored SNG. The output of stored bio-methane is not classified as part of gas storage output even though it 
contributes significantly to the need of gas storage capacity (left). Bio-methane represents 8% of gas consumed in 
Sub-Saharan Africa, and is instead accounted as bioenergy generation. 



Table 7: Sub-Saharan Africa – Installed capacities and net electricity generation by various power sources; installed 
capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 
intervals.  





Figure 25: SAARC – Cumulative installed capacities of various power generation technologies from 2015 to 2050 (left) 
and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 2050 
(right).  



Figure 26: SAARC – Net electricity generation by various power sources from 2015 to 2050 (left) and relative shares 
of electricity generation by various power sources from 2015 to 2050 (right).  

Figure 27: SAARC – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) and net 
output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only stored SNG. 
The output of stored bio-methane is not classified as part of gas storage output even though it contributes significantly 
to the need of gas storage capacity (left). Bio-methane represents 35% of gas consumed in SAARC, and is instead 
accounted as bioenergy generation.  



Table 8: SAARC – Installed capacities and net electricity generation by various power sources; installed capacities 
and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year intervals.  





Figure 28: Northeast Asia – Cumulative installed capacities of various power generation technologies from 2015 to 
2050 (left) and new installed capacities of various power generation technologies for every 5-year interval from 2015 
to 2050 (right).  



Figure 29: Northeast Asia – Net electricity generation by various power sources from 2015 to 2050 (left) and relative 
shares of electricity generation by various power sources from 2015 to 2050 (right).  

Figure 30: Northeast Asia – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) 
and net output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only 
stored SNG. The output of stored bio-methane is not classified as part of gas storage output even though it 
contributes significantly to the need of gas storage capacity (left). Bio-methane represents 33% of gas consumed in 
Northeast Asia, and is instead accounted as bioenergy generation.  



Table 9: Northeast Asia – Installed capacities and net electricity generation by various power sources; installed 
capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 
intervals.  





Figure 31: Southeast Asia – Cumulative installed capacities of various power generation technologies from 2015 to 
2050 (left) and new installed capacities of various power generation technologies for every 5-year interval from 2015 
to 2050 (right). 



Figure 32: Southeast Asia – Net electricity generation by various power sources from 2015 to 2050 (left) and relative 
shares of electricity generation by various power sources from 2015 to 2050 (right).  

Figure 33: Southeast Asia – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) 
and net output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only 
stored SNG. The output of stored bio-methane is not classified as part of gas storage output even though it contri- 
butes significantly to the need of gas storage capacity (left). Bio-methane represents 44% of gas consumed in 
Southeast Asia, and is instead accounted as bioenergy generation.  



Table 10: Southeast Asia – Installed capacities and net electricity generation by various power sources; installed 
capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 
intervals.  





Figure 34: North America – Cumulative installed capacities of various power generation technologies from 2015 to 

2050 (left) and new installed capacities of various power generation technologies for every 5-year interval from 2015 to 

2050 (right).  



Figure 35: North America – Net electricity generation by various power sources from 2015 to 2050 (left) and relative 

shares of electricity generation by various power sources from 2015 to 2050 (right).  

Figure 36: North America – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) 

and net output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only 

stored SNG. The output of stored bio-methane is not classified as part of gas storage output even though it contributes

significantly to the need of gas storage capacity (left). Bio-methane represents 35% of gas consumed in North 

America, and is instead accounted as bioenergy generation.  



Table 11: North America – Installed capacities and net electricity generation by various power sources; installed 

capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 

intervals. 





Figure 37: South America – Cumulative installed capacities of various power generation technologies from 2015 to 

2050 (left) and new installed capacities of various power generation technologies for every 5-year interval from 2015 

to 2050 (right).  



Figure 38: South America – Net electricity generation by various power sources from 2015 to 2050 (left) and relative 

shares of electricity generation by various power sources from 2015 to 2050 (right). 

Figure 39: South America – Cumulative installed capacities of various storage technologies from 2015 to 2050 (left) 

and net output by various storage technologies from 2015 to 2050 (right). Gas storage output (right) includes only 

stored SNG. The output of stored bio-methane is not classified as part of gas storage output even though it 

contributes significantly to the need of gas storage capacity (left). Bio-methane represents 94% of gas consumed in 

South America, and is instead accounted as bioenergy generation.  



Table 12: South America – Installed capacities and net electricity generation by various power sources; installed 

capacities and net output of various storage sources during the energy transition from 2015 to 2050 at 5-year 

intervals.  





Figure 40: Global – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 costs  from

2015 to 2050 (left) and composition of LCOE by various power generation  technologies from 2015 to 2050 (right).  



Figure 41: Global - Capital investments required in power generation and storage technologies for every 5-year 

interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 13: Global – LCOE and investment requirements during the energy transition for every 5-year interval from 

2015 to 2050.  



Figure 42: Europe – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 costs 

 from 2015 to 2050 (left) and composition of LCOE by various power generation  technologies  from 2015 to 2050 

(right).  



Figure 43: Europe - Capital investments required in power generation and storage technologies for every 5-year 

interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).   

Table 14: Europe – LCOE and investment requirements during the energy transition for every 5-year interval from 

2015 to 2050.  



Figure 44: Eurasia – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 costs 

 from 2015 to 2050 (left) and composition of LCOE by various power generation  technologies from 2015 to 2050 

(right).  



Figure 45: Eurasia - Capital investments required in power generation and storage technologies for every 5-year 

interval from 2015 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 15: Eurasia – LCOE and investment requirements during the energy transition for every 5-year interval from 

2015 to 2050.  



Figure 46: MENA – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 costs 

 from 2015 to 2050 (left) and composition of LCOE by various power generation  technologies from 2015 to 2050 

(right).  



Figure 47: MENA - Capital investments required in power generation and storage technologies for every 5-year 

interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 16: MENA – LCOE and investment requirements during the energy transition for every 5-year interval from 

2015 to 2050.  



Figure 48: Sub-Saharan Africa – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and 

CO2 costs  from 2015 to 2050 (left) and composition of LCOE by various power generation  technologies from 2015 to 

2050 (right). 



Figure 49: Sub-Saharan Africa - Capital investments required in power generation and storage technologies for every 

5-year interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 17: Sub-Saharan Africa – LCOE and investment requirements during the energy transition for every 5-year 

interval from 2015 to 2050.  



Figure 50: SAARC – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 costs 

from 2015 to 2050 (left) and composition of LCOE by various power generation  technologies from 2015 to 2050 

(right).  



Figure 51: SAARC - Capital investments required in power generation and storage technologies for every 5-year 

interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 18: SAARC – LCOE and investment requirements during the energy transition for every 5-year interval from

2015 to 2050.  



Figure 52: Northeast Asia – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 

costs  from 2015 to 2050 (left) and composition of LCOE by various power generation technologies from 2015 to 2050 

(right).  



Figure 53: Northeast Asia - Capital investments required in power generation and storage technologies for every 5- 

year interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 19: Northeast Asia – LCOE and investment requirements during the energy transition for every 5-year interval 

from 2015 to 2050.  



Figure 54: Southeast Asia – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 

costs from 2015 to 2050 (left) and composition of LCOE by various power generation technologies from 2015 to 2050 

(right).  



Figure 55: Southeast Asia - Capital investments required in power generation and storage technologies for every 5- 

year interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 20: Southeast Asia – LCOE and investment requirements during the energy transition for every 5-year interval 

from 2015 to 2050.  



Figure 56: North America – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 

costs from 2015 to 2050 (left) and composition of LCOE by various power generation technologies from 2015 to 2050 

(right).  



Figure 57: North America - Capital investments required in power generation and storage technologies for every 5- 

year interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 21: North America – LCOE and investment requirements during the energy transition for every 5-year interval 

from 2015 to 2050.  



Figure 58: South America – Composition of LCOE with shares of LCOS, LCOC and LCOT along with fuel and CO2 

costs  from 2015 to 2050 (left) and composition of LCOE by various power generation technologies from 2015 to 2050 

(right).  



Figure 59: South America - Capital investments required in power generation and storage technologies for every 5- 

year interval from 2020 to 2050 (left) and annual operational expenditure required in power generation and storage 

technologies for every 5-year interval from 2015 to 2050 (right).  

Table 22: South America – LCOE and investment requirements during the energy transition for every 5-year interval 

from 2015 to 2050.  



Figure 60: Shares of solar PV (left) and wind (right) electricity generation across the world in 2050.  



Figure 61: Shares of hydro electricity generation across the world in 2050.  

Figure 62: Shares of battery storage supply (left) and SNG supply (right) of the total electricity supply across the world 

in 2050.  



Figure 63: Total LCOE in 2050 across the different regions of the world.  

Figure 64: The ratios of LCOE primary to the Total LCOE (left) and LCOS to Total LCOE (right) across the different 

regions of the world in 2050.  



Figure 65: Total losses in reference to the final electricity demand during the energy transition from 2015 to 2050 (left) 

and grid losses across the different regions of the world in 2050 (right).  



Figure 66: Share of curtailment losses in comparison to the generation (left) and storage losses in comparison to the 

generation (right) across the different regions of the world in 2050.  



Figure 68: Jobs created based on different categories and the 

development of electricity demand specific jobs during the 

energy transition from 2015 to 2050.  

Figure 67: Jobs created by the various power 

generation and storage technologies during the energy 

transition from 2015 to 2050.  

Figure 69: Global - CO2 emission reduction during 

the energy transition from 2015 to 2050.  



Figure 70: Europe (left) and Eurasia (right) - CO2 emission reduction during the energy transition from 2015 to 2050.  

Figure 71: MENA (left) and Sub-Saharan Africa (right) - CO2 emission reduction during the energy transition from 2015 

to 2050.  

Figure 72: SAARC - CO2 emission reduction during the energy transition from 2015 to 2050.  



Figure 73: Northeast Asia (left) and Southeast Asia (right) - CO2 emission reduction during the energy transition from 

2015 to 2050. 

Figure 74: North America (left) and South America (right) - CO2 emission reduction during the energy transition from 

2015 to 2050.  
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Table 2.1: Electricity demand growth rates across the nine major regions assumed for the energy 
transition from 2015 to 2050  



Table 2.2: Technical and financial assumptions of energy system technologies used in the energy 
transition from 2015 to 2050. Assumptions are taken from Pleßmann et al. (48) and European Commission
(49) and further references are individually mentioned. All technical and financial assumptions are given in 
currency values of the year 2015. 







Table 2.3: Energy to power ratio and self-discharge rates of storage technologies. Efficiency values are 
given for 2015. 

Table 2.5: Efficiency assumptions for HVDC and HVAC transmission for all years 112. 

Table 2.4: Financial assumptions for the fossil-nuclear fuel prices and GHG emission cost. The referenced
values are all till 2040 and are kept stable for later periods (fuels) or are assumed to further increase for 
matching the Paris Agreement (GHG emissions). 



Table 2.6: Employment factors used in the estimation of jobs generated during the energy transition from 
2015 to 2050. Employment factors for batteries are LUT estimates based on US DOE 113 and Hart 2016 
114. Most values are from Rutovitz 2015 73, others are referenced specifically. 



Table 3.1: Global - Installed capacities of power and storage technologies during the energy transition 
from 2015 to 2050. 



Table 3.2: Global - Generation of electricity and storage output during the energy transition from 2015 to 
2050. 



Table 3.3: Europe - Installed capacities of power and storage technologies during the energy transition 
from 2015 to 2050. 



Table 3.4: Europe - Generation of electricity and storage output during the energy transition from 2015 to 
2050. 



Table 3.5: Eurasia - Installed capacities of power and storage technologies during the energy transition 
from 2015 to 2050. 



Table 3.6: Eurasia - Generation of electricity and storage output during the energy transition from 2015 to
2050. 



Table 3.7: MENA - Installed capacities of power and storage technologies during the energy transition from
2015 to 2050. 



Table 3.8: MENA - Generation of electricity and storage output during the energy transition from 2015 to 
2050. 



Table 3.9: Sub-Saharan Africa - Installed capacities of power and storage technologies during the energy
transition from 2015 to 2050.  



Table 3.10: Sub-Saharan Africa - Generation of electricity and storage output during the energy transition
from 2015 to 2050. 



Table 3.11: SAARC - Installed capacities of power and storage technologies during the energy transition 
from 2015 to 2050. 



Table 3.12: SAARC - Generation of electricity and storage output during the energy transition from 2015 to
2050. 



Table 3.13: Northeast Asia - Installed capacities of power and storage technologies during the energy 
transition from 2015 to 2050. 



Table 3.14: Northeast Asia - Generation of electricity and storage output during the energy transition from
2015 to 2050. 



Table 3.15: Southeast Asia - Installed capacities of power and storage technologies during the energy 
transition from 2015 to 2050. 



Table 3.16: Southeast Asia - Generation of electricity and storage output during the energy transition from
2015 to 2050. 



Table 3.17: North America - Installed capacities of power and storage technologies during the energy 
transition from 2015 to 2050. 



Table 3.18: North America - Generation of electricity and storage output during the energy transition from
2015 to 2050. 



Table 3.19: South America - Installed capacities of power and storage technologies during the energy 
transition from 2015 to 2050. 



Table 3.20: South America - Generation of electricity and storage output during the energy transition from
2015 to 2050. 
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4 Supplementary information 
 
Table 4.1: Links to presentation slide sets for Global, the 9 Major regions and 92 Countries/ Regions directly related to 
this study. 

	
	

Global results for all 145 
sub-regions 

http://bit.ly/2gQIY6p 

Major Regions 
  

Europe results for all 20 sub-
regions http://bit.ly/2zonZ6a 

Eurasia results for all 13 sub-
regions http://bit.ly/2zlUVfC 

MENA results for all 17 sub-
regions http://bit.ly/2lDUib0 

Sub-Saharan Africa results for all 16 sub-
regions http://bit.ly/2A5QgeQ 

SAARC results for all 16 sub-
regions http://bit.ly/2iS2TGi 

Northeast Asia results for all 13 sub-
regions http://bit.ly/2gRKghh 

Southeast Asia results for all 15 sub-
regions http://bit.ly/2A44Ao6 

North America results for all 20 sub-
regions http://bit.ly/2zn0IS3 

South America results for all 15 sub-
regions http://bit.ly/2iiWu2O  

Countries/ Regions   
Europe Norway http://bit.ly/2ylpMc9 

Europe Denmark http://bit.ly/2yl3189 

Europe Sweden http://bit.ly/2iSDigs 

Europe Finland http://bit.ly/2z5edmo 

Europe Baltic: Estonia, 
Latvia, Lithuania http://bit.ly/2xLPnXg 

Europe Poland http://bit.ly/2xMGXPu 

Europe Iberia: Portugal, 
Spain, Gibraltar http://bit.ly/2iTLRYr 

Europe France, Monaco, 
Andorra http://bit.ly/2ylKcBG 

Europe 
Belgium, 
Netherlands, 
Luxembourg http://bit.ly/2gUzHdy 

Europe 

British Isles: Ireland, 
United Kingdom, Isle 
of Man, Guernsey, 
Jersey http://bit.ly/2imJQQE 

Europe Germany http://bit.ly/2ilWKhJ 
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Europe Czech Republic, 
Slovakia http://bit.ly/2zYxlSx 

Europe Austria, Hungary http://bit.ly/2zbWonZ 

Europe 

Balkan-West: 
Slovenia, Croatia, 
Bosnia & 
Hertzegovina, Serbia, 
Kosova, Montenegro, 
Macedonia, Albania http://bit.ly/2z6t4j6 

Europe 
Balkan-East: 
Romania, Bulgaria, 
Greece http://bit.ly/2xKNryb 

Europe Italy, San Marino, 
Vatican 

http://bit.ly/2zoCerI 

Europe Switzerland, 
Liechtenstein http://bit.ly/2ylSObu 

Europe Turkey, Cyprus http://bit.ly/2gUt7Uc 

Europe Ukraine, Moldova http://bit.ly/2h5W5o7 

Europe Iceland http://bit.ly/2z3VffT 

Eurasia Russia http://bit.ly/2xIeIRK 

Eurasia Belarus http://bit.ly/2zX6XIq 

Eurasia 
Armenia, Azerbaijan, 
Georgia http://bit.ly/2A4k0sG 

Eurasia Kazakhstan http://bit.ly/2il1Zht 

Eurasia 
Tajikistan, 
Kyrgyzstan http://bit.ly/2ijTvHq 

Eurasia Uzbekistan http://bit.ly/2iR3Hvb 

Eurasia Turkmenistan http://bit.ly/2z3cqR6 

MENA Algeria http://bit.ly/2xIA3L5 

MENA Bahrain, Qatar http://bit.ly/2zX7qup 

MENA Egypt http://bit.ly/2imgT79 

MENA Iran http://bit.ly/2ijnSxV 

MENA Iraq http://bit.ly/2lChFSF 

MENA Israel http://bit.ly/2A7i8iU 

MENA 
Jordan, State of 
Palestine (West Bank 
& Gaza Strip) http://bit.ly/2gSuW3Z 

MENA Kuwait http://bit.ly/2xJ1uEx 

MENA Lebanon http://bit.ly/2h25dd4 

MENA Libya http://bit.ly/2htCQ4L 

MENA Morocco http://bit.ly/2xJ2BUJ 

MENA Oman http://bit.ly/2gUbRyH 

MENA Saudi Arabia http://bit.ly/2z3KtZt 
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MENA Tunisia http://bit.ly/2htPQai  

MENA United Arab Emirates http://bit.ly/2zW2UMI 

MENA Yemen http://bit.ly/2zZylpj 

MENA Syria http://bit.ly/2lCky5X 

Sub-Saharan Africa 

Senegal, Gambia, 
Cape Verde Islands, 
Guinea Bissau, 
Guinea, Sierra 
Leone, Liberia, Mali, 
Mauritania, Western 
Sahara http://bit.ly/2lGJNDY 

Sub-Saharan Africa 
Ghana, Cote D'Ivoire, 
Benin, Burkina Faso, 
Togo http://bit.ly/2lJHVKK 

Sub-Saharan Africa Niger, Chad http://bit.ly/2hyJmHt 

Sub-Saharan Africa Nigeria http://bit.ly/2lIZlHt 

Sub-Saharan Africa Sudan, Eritrea http://bit.ly/2hz7ObB 

Sub-Saharan Africa Ethiopia http://bit.ly/2lJynQ3 

Sub-Saharan Africa Djibouti, Somalia http://bit.ly/2zb7sja 

Sub-Saharan Africa Kenya, Uganda http://bit.ly/2xSDcb8 

Sub-Saharan Africa 
Rwanda, Burundi, 
Tanzania http://bit.ly/2h6WTsK 

Sub-Saharan Africa 

Central African 
Republic, Cameroon, 
Equatorial Guinea, 
São Tomé and 
Príncipe, Congo, 
Republic of 
(Brazzaville), Gabon http://bit.ly/2A1yd8J 

Sub-Saharan Africa 
Congo, Democratic 
Republic (Kinshasa) http://bit.ly/2hyZ7Op 

Sub-Saharan Africa 
Angola, Namibia, 
Botswana http://bit.ly/2z8q2bn 

Sub-Saharan Africa 
Republic of South 
Africa, Lesotho http://bit.ly/2zenF9g 

Sub-Saharan Africa 

Malawi, 
Mozambique, 
Zambia, Zimbabwe, 
Swaziland  http://bit.ly/2iXHknR 

Sub-Saharan Africa 

Madagascar, 
Comoros Islands, 
Mauritius, Mayotte, 
Seychelles http://bit.ly/2z96GTD 

SAARC India http://bit.ly/2h2zzwg  

SAARC Bangladesh http://bit.ly/2z3WOKU  

SAARC Nepal, Bhutan http://bit.ly/2zZ9HFc  

SAARC Pakistan http://bit.ly/2zX2w0d  

SAARC Afghanistan http://bit.ly/2za2MvQ  
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SAARC Sri Lanka http://bit.ly/2iR034v  

Northeast Asia Japan http://bit.ly/2ijP5jP  

Northeast Asia Republic of Korea http://bit.ly/2z51sZi  

Northeast Asia DPR Korea http://bit.ly/2iQRaaQ  

Northeast Asia China http://bit.ly/2gRvjMf  

Northeast Asia Mongolia http://bit.ly/2zakQpC  

Southeast Asia New Zealand http://bit.ly/2z94MEt  

Southeast Asia Australia http://bit.ly/2z8b7jM  

Southeast Asia Indonesia, Papua 
New Guinea http://bit.ly/2lEs6oO  

Southeast Asia Malaysia, Singapore, 
Brunei http://bit.ly/2iTpMsL  

Southeast Asia Philippines http://bit.ly/2zmS6Lr  

Southeast Asia Myanmar http://bit.ly/2gRcYyZ  

Southeast Asia Thailand http://bit.ly/2zb1twu  

Southeast Asia Laos http://bit.ly/2h20ZSY  

Southeast Asia Vietnam http://bit.ly/2z9uKbg  

Southeast Asia Cambodia http://bit.ly/2gZFrq0  

North America Canada http://bit.ly/2z7TK2t  

North America United States of 
America http://bit.ly/2A4ZW9y  

North America Mexico http://bit.ly/2zmcD2K 

South America 

Panama, Costa Rica, 
Nicaragua, 
Honduras, El 
Salvador, 
Guatemala, Belize http://bit.ly/2ikbrlr    

South America Colombia http://bit.ly/2z9FHcP  

South America 
Venezuela, Guyana, 
French Guiana, 
Suriname 

http://bit.ly/2ykuFCk  

South America Ecuador http://bit.ly/2A4NPJu  

South America Peru http://bit.ly/2huf2xs  

South America Bolivia and Paraguay http://bit.ly/2lBNxGZ  
South America Brazil http://bit.ly/2zW0q0V  
South America Argentina, Uruguay http://bit.ly/2A2T7oZ  
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South America Chile http://bit.ly/2ijqCuW  
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Table 4.2: Further publications of the LUT team in close relation to this study. The types of publications are scientific 
journals (J), scientific conferences (C) and technical reports (R). 

	
Region Reference Year Type Link 

Global 

Breyer Ch., Bogdanov D., 
Aghahosseini A., Gulagi A., Child M., 
Oyewo A.S., Farfan J., Sadovskaia 
K., Vainikka P., 2017. Solar 
Photovoltaics Demand for the Global 
Energy Transition in the Power 
Sector, Progress in Photovoltaics: 
Research and Applications, 
accepted, DOI: 10.1002/pip.2950 

2017 J https://goo.gl/zsdFZi 

Global 

Breyer Ch., Bogdanov D., Gulagi A., 
Aghahosseini A., Barbosa L.S.N.S., 
Koskinen O., Barasa M., Caldera U., 
Afanasyeva S., Child M., Farfan J., 
Vainikka P., 2017. On the Role of 
Solar Photovoltaics in Global Energy 
Transition Scenarios, Progress in 
Photovoltaics: Research and 
Applications, 25, 727-745, DOI: 
10.1002/pip.2885 

2017 J http://bit.ly/2nUVCpw 

Global 

Farfan J. and Breyer Ch., 2017. 
Structural changes of global power 
generation capacity towards 
sustainability and the risk of stranded 
investments supported by a 
sustainability indicator, Journal of 
Cleaner Production, 141, 370-384, 
DOI: 10.1016/j.jclepro.2016.09.068 

2017 J http://bit.ly/2k4Jhhq 

Global 

Breyer Ch., Heinonen S., 
Ruotsalainen J., 2017. New 
Consciousness: A societal and 
energetic vision for rebalancing 
humankind within the limits of planet 
Earth, Technological Forecasting and 
Social Change, 114, 7-15, DOI: 
10.1016/j.techfore.2016.06.029 

2017 J http://bit.ly/2iSBpQX 

Global 

Solomon A.A., Child M., Caldera U., 
Breyer Ch., 2017. How much energy 
storage is needed to incorporate very 
high large intermittent renewables?, 
Energy Procedia, 135, 283-293, DOI: 
10.1016/j.egypro.2017.09.520 

2017 J http://bit.ly/2iSx1kS 

Global 

Fasihi M., Bogdanov D., Breyer Ch., 
2016. Techno-Economic Assessment 
of Power-to-Liquids (PtL) Fuels 
Production and Global Trading 
Based on Hybrid PV-Wind Power 
Plants, Energy Procedia, 99, 243-
268, DOI: 
10.1016/j.egypro.2016.10.115 

2016 J http://bit.ly/2oDE4uN 
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Global 

Koskinen O. and Breyer Ch., 2016. 
Energy Storage in Global and 
Transcontinental Energy Scenarios: 
A Critical Review, Energy Procedia, 
99, 53-63, DOI: 
10.1016/j.egypro.2016.10.097 

2016 J http://bit.ly/2uKTsf6 

Global 

Caldera U., Bogdanov D., Breyer 
Ch., 2016. Local cost of seawater RO 
desalination based on solar PV and 
wind energy: A global estimate, 
Desalination, 385, 207-216, DOI: 
10.1016/j.desal.2016.02.004 

2016 J http://bit.ly/2g7Bcpc 

Global 

Breyer Ch., Koskinen O., Blechinger 
P., 2015. Profitable climate change 
mitigation: The case of greenhouse 
gas emission reduction benefits 
enabled by solar photovoltaic 
systems, Renewable and 
Sustainable Energy Reviews, 49, 
610-628, DOI: 
10.1016/j.rser.2015.04.061 

2015 J http://bit.ly/2xKLDW2 

Global 

Manish Ram, Michael, Child, Arman 
Aghahosseini, Dmitrii Bogdanov, 
Alena Poleva, Breyer Ch., 2017. 
Comparing electricity production 
costs of renewables to fossil and 
nuclear power plants in G20 
countries, study commissioned by 
Greenpeace Deutschland e.V., July 5 

2017 R http://bit.ly/2u28u0L 

Global 

Werner Ch., Gerlach A., Breyer Ch., 
Masson G., 2017. Growth Regions in 
Photovoltaics 2016 – Update on 
latest Global Solar Market 
Development, 33rd European 
Photovoltaic Solar Energy 
Conference, Amsterdam, September 
25-29 

2017 C http://bit.ly/2xT4i6e 

Global 

Keiner D. and Breyer Ch., 2017. 
Modelling of PV Prosumers using a 
stationary battery, heat pump, 
thermal energy storage and electric 
vehicle for optimizing self-
consumption ratio and total cost of 
energy, 33rd European Photovoltaic 
Solar Energy Conference, 
Amsterdam, September 25-29 

2017 C http://bit.ly/2huro8N 

Global 

Fasihi M. and Breyer Ch., 2017. 
Synthetic Methanol and Dimethyl 
Ether Production based on Hybrid 
PV-Wind Power Plants, 11th 
International Renewable Energy 
Storage Conference (IRES 2017), 
Düsseldorf, March 14-16 

2017 C http://bit.ly/2qvsLYf 
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Global 

Solomon A.A., Child M., Caldera U., 
Breyer Ch., 2017. Exploiting resource 
complementarities to reduce energy 
storage need, 11th International 
Renewable Energy Storage 
Conference (IRES 2017), Düsseldorf, 
March 14-16 

2017 C http://bit.ly/2zacLBx 

Global 

Bogdanov D., Gulagi A., Breyer Ch., 
2016. PV generation share in the 
energy system and battery utilisation 
correlation in a net zero emission 
world, 6th Solar Integration 
Workshop, Vienna, November 14-15 

2016 C http://bit.ly/2iujITo 

Global 

Fasihi M., Bogdanov D., Breyer Ch., 
2015. Economics of global gas-to-
liquids (GtL) fuels trading based on 
hybrid PV-Wind power plants, ISES 
Solar World Congress 2015, Daegu, 
Korea, November 8-12 

2015 C http://bit.ly/2huFJlV 

Global 

Fasihi M., Bogdanov D., Breyer Ch., 
2015. Economics of global LNG 
trading based on hybrid PV-Wind 
power plants, 31st EU PVSEC, 
Hamburg, September 14-18, DOI: 
10.4229/31stEUPVSEC2015-
7DO.15.6 

2015 C http://bit.ly/2e0qe24 

Global 

Metayer M., Breyer Ch., Fell H.-J., 
2015. The projections for the future 
and quality in the past of the World 
Energy Outlook for solar PV and 
other Renewable Energy 
technologies, 31st EU PVSEC, 
Hamburg, September 14-18, DOI: 
10.4229/31stEUPVSEC2015-
7DV.4.61 

2015 C http://bit.ly/2izWUUJ 

Europe 

Child M., Bogdanov D., Breyer Ch., 
Fell H.-J., 2017. Role of storage 
technologies for the transition to a 
100% renewable energy system in 
Ukraine, Energy Procedia, 135, 410-
423, DOI: 
10.1016/j.egypro.2017.09.513 

2017 J http://bit.ly/2imPouf 

Europe 

Kilickaplan A., Bogdanov D., Peker 
O., Caldera U., Aghahosseini A., 
Breyer Ch., 2017. An Energy 
Transition Pathway for Turkey to 
Achieve 100% Renewable Energy 
Powered Electricity, Desalination and 
Non-energetic Industrial Gas 
Demand Sectors by 2050, Solar 
Energy, 158, 218-235, DOI: 
10.1016/j.solener.2017.09.030 

2017 J http://bit.ly/2imdkhB 
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Europe 

Farfan J. and Breyer Ch., 2017. 
Aging of European Power Plant 
Infrastructure as an Opportunity to 
evolve towards Sustainability, 
International Journal of Hydrogen 
Energy, 42, 18081-18091, DOI: 
10.1016/j.ijhydene.2016.12.138 

2017 J http://bit.ly/2oDtGmU 

Europe 

Child M., Haukkala T., Breyer Ch., 
2017. The Role of Solar 
Photovoltaics and Energy Storage 
Solutions in a 100% Renewable 
Energy System for Finland in 2050, 
Sustainability, 9, 1358, DOI: 
10.3390/su9081358 

2017 J http://bit.ly/2f7Vb6b 

Europe 

Child M., Nordling A., Breyer Ch., 
2017. Potential Scenarios for a 
Sustainable Energy System in the 
Åland Islands in 2030, Energy 
Conversion and Management, 137, 
49-60, DOI: 
10.1016/j.enconman.2017.01.039 

2017 J http://bit.ly/2pcwQSE 

Europe 

Child M. and Breyer Ch., 2016. The 
role of energy storage solutions in a 
100% renewable Finnish energy 
system, Energy Procedia, 99, 25-34, 
DOI: 10.1016/j.egypro.2016.10.094 

2016 J http://bit.ly/2pWUjYP 

Europe 

Child M. and Breyer Ch., 2016. 
Vision and Initial Feasibility Analysis 
of a Recarbonised Finnish Energy 
System, Renewable and Sustainable 
Energy Review, 66, 517-536, DOI: 
10.1016/j.rser.2016.07.001 

2016 J http://bit.ly/2ioGCtI 

Europe 

Breyer Ch., Tsupari E., Tikka V., 
Vainikka P., 2015. Power-to-Gas as 
an emerging profitable business 
through creating an integrated value 
chain, Energy Procedia, 73, 182-189, 
DOI: 10.1016/j.egypro.2015.07.668 

2015 J http://bit.ly/22h3UHf 

Europe 

Vartiainen E., Masson G., Breyer 
Ch., 2017. The True Competitiveness 
of Solar PV - A European Case 
Study, EU Technology & Innovation 
Platform – PV, May 8 

2017 R http://bit.ly/2qxV9Y6 

Europe 

Vartiainen E., Masson G., Breyer 
Ch., 2015. PV LCOE in Europe 2014-
30, , EU Technology & Innovation 
Platform – PV, July 8 

2015 R http://bit.ly/2zmLAE9 
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Europe 

Vartiainen E., Masson G., Breyer 
Ch., Moser D., 2017. Improving the 
competitiveness of solar PV with 
electricity storage, 33rd European 
Photovoltaic Solar Energy 
Conference, Amsterdam, September 
25-29 

2017 C http://bit.ly/2z4i45A 

Europe 

Child M., Nordling A., Breyer Ch., 
2017. The impacts of high V2G 
participation in a 100% renewable 
Åland energy system, 11th 
International Renewable Energy 
Storage Conference (IRES 2017), 
Düsseldorf, March 14-16 

2017 C http://bit.ly/2ppHzGC 

Europe 

Bogdanov D. and Breyer Ch., 2016. 
Integrating the excellent wind 
resources in Northwest Russia for a 
sustainable energy supply in Europe, 
15th Wind Integration Workshop, 
Vienna, November 15-17 

2016 C http://bit.ly/2jIS7A9 

Europe 

Bogdanov D., Koskinen O., 
Aghahosseini A., Breyer Ch., 2016. 
Integrated renewable energy based 
power system for Europe, Eurasia 
and MENA regions, 5th International 
Energy and Sustainability 
Conference (IESC), Cologne, June 
30 – July 1 

2016 C http://bit.ly/2hJoAH9 

Europe 

Lassila J., Tikka V., Haapaniemi H., 
Child M., Breyer Ch., Partanen J., 
2016. Nationwide Photovoltaic 
Hosting Capacity in the Finnish 
Electricity Distribution System, 32nd 
EU PVSEC, Munich, June 20-24, 
DOI: 10.4229/32ndEUPVSEC2016-
6AV.4.11 

2016 C http://bit.ly/2juhxyc 

Europe 

Kosonen A., Ahola J., Breyer Ch., 
Albó A., 2014. Large Scale Solar 
Power Plant in Nordic Conditions, 
16th EU Conference on Power 
Electronics and Applications (EPE 
’14), Lappeenranta, August 26-28 

2014 C http://bit.ly/2gT4xTH 

Eurasia 

Bogdanov D., Toktarova A., Breyer 
Ch., 2017. Transition Towards 100% 
Renewable Energy system by 2050 
for Kazakhstan, Astana Economic 
Forum, Astana, June 15-16 

2017 C http://bit.ly/2s4hq40 

Eurasia 

Bogdanov D. and Breyer Ch., 2016. 
Integrating the excellent wind 
resources in Northwest Russia for a 
sustainable energy supply in Europe, 
15th Wind Integration Workshop, 
Vienna, November 15-17 

2016 C http://bit.ly/2jIS7A9 
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Eurasia 

Bogdanov D., Koskinen O., 
Aghahosseini A., Breyer Ch., 2016. 
Integrated renewable energy based 
power system for Europe, Eurasia 
and MENA regions, 5th International 
Energy and Sustainability 
Conference (IESC), Cologne, June 
30 – July 1 

2016 C http://bit.ly/2hJoAH9 

Eurasia 

Bogdanov D. and Breyer Ch., 2015. 
Eurasian Super Grid for 100% 
Renewable Energy power supply: 
Generation and storage technologies 
in the cost optimal mix, ISES Solar 
World Congress 2015, Daegu, 
Korea, November 8-12 

2015 C http://bit.ly/2rgrjYx 

MENA 

Aghahosseini A., Bogdanov D., 
Ghorbani N., Breyer Ch., 2017. 
Analysis of 100% renewable energy 
for Iran in 2030: integrating solar PV, 
wind energy and storage, 
International Journal of 
Environmental Science and 
Technology, published online June 
13, in press, DOI: 10.1007/s13762-
017-1373-4 

2017 J http://bit.ly/2ykKNne 

MENA 

Ghorbani N., Aghahosseini A., 
Breyer Ch., 2017. Transition to a 
100% renewable energy system and 
the role of storage technologies: A 
case study for Iran, Energy Procedia, 
135, 23-36, DOI: 
10.1016/j.egypro.2017.09.484 

2017 J http://bit.ly/2hwrNb8 

MENA 

Caldera U., Bogdanov D., Breyer 
Ch., 2017. Impact of Battery and 
Water Storage on the Transition to 
an Integrated 100% Renewable 
Energy Power System for Saudi 
Arabia, Energy Procedia, 135, 126-
142, DOI: 
10.1016/j.egypro.2017.09.496  

2017 J http://bit.ly/2zacnTA 

MENA 

Fasihi M., Bogdanov D., Breyer Ch., 
2017. Long-Term Hydrocarbon Trade 
Options for the Maghreb Region and 
Europe – Renewable Energy Based 
Synthetic Fuels for a Net Zero 
Emissions World, Sustainability, 9, 
306, DOI: 10.3390/su9020306 

2017 J http://bit.ly/2psoJlX 

MENA 

Afanasyeva S., Breyer Ch., 
Engelhard M., 2016. Impact of 
battery cost on the economics of 
hybrid photovoltaic power plants, 
Energy Procedia, 99, 157-173, DOI: 
10.1016/j.egypro.2016.10.107 

2016 J http://bit.ly/2ikWNdw 
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MENA 

Bogdanov D., Koskinen O., 
Aghahosseini A., Breyer Ch., 2016. 
Integrated renewable energy based 
power system for Europe, Eurasia 
and MENA regions, 5th International 
Energy and Sustainability 
Conference (IESC), Cologne, June 
30 – July 1 

2016 C http://bit.ly/2hJoAH9 

MENA 

Caldera U., Bogdanov D., 
Afanasyeva S., Breyer Ch., 2016. 
Integration of reverse osmosis 
seawater desalination in the power 
sector, based on PV and wind 
energy, for the Kingdom of Saudi 
Arabia, 32nd EU PVSEC, Munich, 
June 20-24, DOI: 
10.4229/32ndEUPVSEC2016-
6AV.4.8 

2016 C http://bit.ly/2iVKP97 

MENA 

Fasihi M., Bogdanov D., Breyer Ch., 
2016. Long-term Hydrocarbon 
Export Options for Iran – Renewable 
Energy based Synthetic Fuels for a 
Net Zero Emissions World, 11th 
International Energy Conference, 
Tehran, May 30-31 

2016 C http://bit.ly/2pKuxYx 

MENA 

Aghahosseini A., Bogdanov D., 
Breyer Ch., 2016. The MENA Super 
Grid towards 100% Renewable 
Energy Power Supply by 2030, 11th 
International Energy Conference, 
Tehran, May 30-31 

2016 C http://bit.ly/2iYvZCO 

MENA 

Caldera U., Bogdanov D., Fasihi M., 
Aghahosseini A., Breyer Ch., 2016. 
Renewable Energy Powered 
Desalination: A Sustainable Solution 
to the Iranian Water Crisis, 11th 
International Energy Conference, 
Tehran, May 30-31 

2016 C http://bit.ly/2k2Zi41 

MENA 

Bogdanov D. and Breyer Ch., 2015. 
The Role of Solar Energy towards 
100% Renewable Power Supply for 
Israel: Integrating Solar PV, Wind 
Energy, CSP and Storages, 19th 
Sede Boqer Symposium on Solar 
Electricity Production, February 23-
25 

2015 C http://bit.ly/1JlaiDI 

MENA 

Breyer Ch. and Reiss J., 2014. 
Hybrid Photovoltaic Power Plants: 
Least Cost Power Option for the 
MENA Region, 29th EU PVSEC, 
Amsterdam, September 22-26, DOI: 
10.4229/29thEUPVSEC2014-
7AV.6.23 

2014 C http://bit.ly/2huGTxN 
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Sub-
Saharan 
Africa 

Oyewo A.S., Aghahosseini A, Breyer 
Ch., 2017. Assessment of energy 
storage technologies in transition to 
a 100% renewable energy system 
for Nigeria, 11th International 
Renewable Energy Storage 
Conference (IRES 2017), 
Düsseldorf, March 14-16 

2017 C http://bit.ly/2mzo9gX 

Sub-
Saharan 
Africa 

Blechinger P., Cader C., Oyewo 
A.S., Breyer Ch., Bertheau P., 2016. 
Energy Access for Sub-Saharan 
Africa with the Focus on PV Hybrid 
Mini-Grids, International Conference 
on Solar Technologies & Hybrid Mini 
Grids to improve energy access, Bad 
Hersfeld, September 21-23 

2016 C http://bit.ly/2oSdQXg 

Sub-
Saharan 
Africa 

Barasa M., Bogdanov D., Oyewo 
A.S., Breyer Ch., 2016. A Cost 
Optimal Resolution for Sub-Saharan 
Africa powered by 100 Percent of 
Renewables by the Year 2030, 32nd 
EU PVSEC, Munich, June 20-24, 
DOI: 10.4229/32ndEUPVSEC2016-
6AV.4.9 

2016 C http://bit.ly/2izNb0A 

SAARC 

Gulagi A., Bogdanov D., Breyer Ch., 
2017. The Demand for Storage 
Technologies in Energy Transition 
Pathways Towards 100% 
Renewable Energy for India, Energy 
Procedia, 135, 37-50, DOI: 
10.1016/j.egypro.2017.09.485 

2017 J http://bit.ly/2vSldF1 

SAARC 

Gulagi A., Bogdanov D., Choudhary 
P., Breyer Ch., 2017. Electricity 
system based on 100% renewable 
energy for India and SAARC, PLoS 
ONE, 12, e0180611, DOI: 
10.1371/journal.pone.0180611 

2017 J http://bit.ly/2wmRUd0 

SAARC 

Gulagi A., Ram M., Breyer Ch., 
2017. Solar-Wind Complementarity 
with Optimal Storage and 
Transmission in Mitigating the 
Monsoon Effect in Achieving a Fully 
Sustainable Electricity System for 
India, 1st International Conference 
on Large-Scale Grid Integration of 
Renewable Energy in India, New 
Delhi, September 6-8 

2017 C http://bit.ly/2xcwVdP 

SAARC 

Ram M., Gulagi A., Keiner D., Breyer 
Ch., 2017. Role of solar PV 
prosumers in enabling the energy 
transition towards a fully renewables 
based power system for India, 1st 
International Conference on Large-
Scale Grid Integration of Renewable 
Energy in India, New Delhi, 

2017 C http://bit.ly/2xaP2Ab 
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September 6-8 

Northeast 
Asia 

Gulagi A., Bogdanov D., Fasihi M., 
Breyer Ch., 2017. Can Australia 
Power the Energy-Hungry Asia with 
Renewable Energy?, Sustainability, 
9, 233, DOI: 10.3390/su9020233 

2017 J http://bit.ly/2pcIaOs 

Northeast 
Asia 

Bogdanov D. and Breyer Ch., 2016. 
North-East Asian Super Grid for 
100% Renewable Energy supply: 
Optimal mix of energy technologies 
for electricity, gas and heat supply 
options, Energy Conversion and 
Management, 112, 176-190, DOI: 
10.1016/j.enconman.2016.01.019 

2016 J http://bit.ly/2jbkh7B 

Northeast 
Asia 

Breyer Ch., Bogdanov D., Komoto 
K., Ehara T., Song J., Enebish N., 
2015. North-East Asian Super Grid: 
Renewable Energy Mix and 
Economics, Japanese Journal of 
Applied Physics, 54, 08KJ01, DOI: 
10.7567/JJAP.54.08KJ01 

2015 J http://bit.ly/1Or7YKz 

Southeast 
Asia 

Gulagi A., Bogdanov D., Breyer Ch., 
2017. Southeast Asia and the Pacific 
Rim Super Grid for 100% 
Renewable Energy Power Supply, 
Energies, 10, 583, DOI: 
10.3390/en10050583 

2017 J http://bit.ly/2z4lSnl 

Southeast 
Asia 

Gulagi A., Bogdanov D., Fasihi M., 
Breyer Ch., 2017. Can Australia 
Power the Energy-Hungry Asia with 
Renewable Energy?, Sustainability, 
9, 233, DOI: 10.3390/su9020233 

2017 J http://bit.ly/2pcIaOs 

North 
America 

Aghahosseini A., Bogdanov D., 
Breyer Ch., 2017. A techno-
economic study of an entirely 
renewable energy based power 
supply for North America for 2030 
conditions, Energies, 10, 1171; DOI: 
10.3390/en10081171 

2017 J http://bit.ly/2znqK7Q 

South 
America 

Barbosa L.S.N.S., Bogdanov D., 
Vainikka P., Breyer Ch., 2017. 
Hydro, wind and solar power as a 
base for a 100% Renewable Energy 
supply for South and Central 
America, PLoS ONE, 12, e0173820, 

2017 J http://bit.ly/2psxQDd 
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DOI: 10.1371/journal.pone.0173820 

South 
America 

Barbosa L.S.N.S., Farfan Orozco J., 
Bogdanov D., Vainikka P., Breyer 
Ch., 2016. Hydropower and Power-
to-Gas Storage Options: The 
Brazilian Energy System Case, 
Energy Procedia, 99, 89-107, DOI: 
10.1016/j.egypro.2016.10.101 

2016 J http://bit.ly/2oXN2GR 

	


